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List of Definitions 
Quadcopter ​- A robotic unit that utilizes four motorized propellers to move in 3 
dimensional space 
Drone ​- Synonymous with ‘Quadcopter’ 
ESC​ - Electronic Speed Controller 
Quadcopter Cameraman ​- The name of the project and the generalized name of the 
robot being developed 
Module ​- An electronic hardware device such as GPS, Barometer, Accelerometer, ect. 
Installed to the Quadcopter platform 
Target ​- In context related to the project, a target is a human being recognized by the 
Quadcopter and image recognition software. Typically, the target is one or both of the 
performing dancers 
User ​- A person intended to interact with the Quadcopter Cameraman deliverables 
including the performing dancer(s), android app handlers, or quadcopter technicians 
Track ​- Used as a verb in context with the project. Means to know one or both dancers’ 
location(s) within the frame of the Raspberry Pi camera on board the Quadcopter 
Cameraman 
Frame ​- The Quadcopter Cameraman will record video of a dance performance. A frame 
refers to a still image which is one of many still images which compose the full video 
GPS ​- Acronym for Global Positioning System 
Barometer ​- A hardware module which calculates air pressure. This is used to 
determine the altitude at which the air pressure reading was taken 
Accelerometer ​- A hardware module which calculates the module’s acceleration in the 
x,y, and z axis 
On-platform ​- The physical quadcopter 
Off-platform ​- Not the physical quadcopter 
Onboard ​- synonymous with ‘On-platform’ 
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Facial identification​ - The ability to identify the presence of a face in a picture frame 
Facial recognition​ - The ability to identify the presence of a particular face with a certain 
amount of confidence rating.  
Arm the drone​ - Allows the motors to turn 
Disarm the drone​ - Disables the motors from turning 
Lighthouse ​- Will check the surrounding area by turning in place 
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Executive Summary 
Problem Statement 

The problem that we are trying to solve is that the Descarga Latin Dance Club on                
campus is having difficulties recording themselves and other members during performances.           
The main issue is that a cameraman can be obtrusive on a dance floor and get in the way of the                     
dancers themselves or other dancers that may or may not be on the floor at the same time. We                   
wanted to provide a more dynamic approach to recording dancers. Most dances involve moving              
across the dance floor which makes static methods such as a stationary tripod poor alternatives.               
To solve this issue our client has hired us to design, build, and program an autonomous                
quadcopter. This quadcopter will be able to identify the target dancers and follow them at a                
preset distance.  
 
Scope 

The objective is to build a camera drone capable of maneuvering and keeping multiple              
people in frame. To minimize externalities, we have set the project in the context of a dance                 
performance. The types of dances include swing, west coast, salsa, and bachata. Target             
tracking and following are our primary goals. Performance and stamina come secondary. The             
drone should be able to follow the lead dancer at all times. The second dancer should be in                  
frame whenever possible. As for performance, the drone should react quickly enough to create              
a seamless and effective recording of the dance. The drone should be able to maintain flight for                 
the extent of the dance: a maximum of 5 minutes.  

1. Requirements Specification 
1.1. Functional Requirements  
Flight Control 

The drone needs to be able to pitch forward and backwards, roll left and right, yaw                
clockwise and counterclockwise, increase and decrease throttle, and hover. It receives input in             
the form of a command or location object. A location object will have both a distance and an                  
angle to the target. With this information the flight controller can cause the drone to physically                
move so that the target is in the ideal location within a camera frame. 

 
Image Recognition and Tracking 

The drone will need to track the dancers while they move. To accomplish this the               
camera will stream camera information to the onboard Pi. The Pi will process the images and                
determine the location of the retroreflective tape. Using this location, the drone will then use               
machine learning to determine the distance and angle to the target. It will send this data to the                  
flight controller, thus allowing the flight controller to make the necessary changes. 
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Video Quality 

The drone shall be able to record video at a minimum quality of 480p. The video footage                 
acquired will have both dancers present in 80 percent of frames.  

1.2. High-level Requirements  
Flight Time 

The flight time of the drone needs to be a minimum of 5 minutes. 
Drone Flight Control 

The drone needs to have stable control of its own flight.  
Video Quality 

The quality of the video needs to be of at least 480dp x 640dp.  
 
 

1.3. Use-cases 
User Configures Run Time Settings 

The User Navigates the Android app to open a screen with buttons for configuring the 
drone’s mask settings for the computer vision software. On this screen, after the process is 
initiated by the user, there are several buttons the user can use to calibrate the mask. The 
purpose of calibration is to tell computer vision what is and what is not the target. 
 
User Arms/Disarms Drone 

The user navigates the Android app to a screen for initiating flight. Here, the user can 
arm or disarm the drone. Arming the drone allows it to take flight. Disarming the drone restricts 
the drone from taking flight. 

When the drone is armed, the flight controller thread should be started. When the drone 
is disarmed, flight controller thread is ended. 
 
User Uses Drone to record Performance 

If and only if the drone is armed, the user can tell the drone to begin the session. When 
this is communicated, the drone will ascend to the configured altitude and begin tracking the 
target. A video is recorded for the duration of that session. 
  
User Retrieves Video Recorded During Flight 

The user navigates the app to a screen to manage videos stored from flights. The video 
can be uploaded to a repository to be viewed from a personal computer, or the app itself. 
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1.4. Non-functional requirements  
Responsiveness  

The purpose of this drone is to track dancers and capture video of their performance.               
The drone’s movement can range from a stationary, hovering position to sudden, quick             
movements depending on the dance. As the dancers move about, the drone will have to move                
to keep them in center frame. It is of high importance that we minimize the lag between dancers’                  
movements and the drone’s response. 

 
Security 

The project has no reliance on a database. There are no user accounts, passwords, and               
data to be stored. However, the Raspberry Pi will act as a server for the android app client                  
device to connect to. This device will send commands to the Raspberry Pi which will control                
many aspects of the quadcopter’s behavior. This behavior can range from autonomous protocol             
activation/deactivation, altitude adjustments, forward and backward movement, side to side          
movement, platform rotation, and turning off and on of motors. Thus it is of high importance that                 
the Raspberry Pi can only be connected to be the intended device. All device communication               
should not be susceptible to Replay Attacks.  

 
Reliability 

Given the extent of control which the android application has over the Quadcopter, it is 
imperative that the Raspberry Pi maintain connection with the android application. Restrictions 
should be placed on the quadcopter’s freedom of movement to keep it within range of the 
off-platform device which is connected. Furthermore, when connection is lost, the Raspberry Pi 
should halt autonomous protocol and attempt to re-establish connection with the off-platform 
device 

 
The project’s objective is to record a pair of dancers for the duration of the performance. 

It can be said without debate that the software’s reliability for correctly identifying dancers 
throughout the performance is the most important requirement within the project. Without this, 
there is no product.  

 
Useability 

The setup and usage of the product must be simple enough for any user to complete all                 
of the defined use cases with a minimal strain on the user’s comfort. 

2. System Design & Development 
2.1. Design Plan 
Build a quadcopter drone capable of autonomous flight that can track and follow dancers. First 
we built and tested the individual systems such as the frame, electric systems, and motor 
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systems. Then we incorporated the systems into another while testing for maintained individual 
capacity. We continued from there to integrate the drone systems into one another.  

2.2. Design Objectives, System Constraints, Design 
Trade-offs 

Design Objectives 
System Constraints 

● 5 minute or more flight time 
● There are no obstacles that the drone has to maneuver 
● The target is easily distinguishable from another non-target 
● The floor is level 
● In door flight only 

 
Design Trade-offs 
Benefits 

The general problem is following a person with a camera. Our solution is to use an                
autonomous drone that uses image recognition to identify the individual(s), track where they are              
in relation to the drone, and adjust accordingly. A benefit of our proposed solution is that drone                 
technology is well understood and documented so we will have plenty of sources to draw from                
throughout the different stages of the project. A drone can have equal or better response time                
than a human leading to smoother and more reactive video. Our solution allows the user to get                 
dynamic shots without needing another person. Essentially they can move around a great deal              
more than they would with traditional solo filming methods such as a tripod shot (static, camera                
does not move) or a dolly shot (dynamic but limited and expensive). An autonomous drone               
offers the user a cost-effective solution to get shots they couldn’t normally get without              
expensive, specialized equipment and trained staff; it’s a cheap jack-of-all trades solution. For             
example, a crane rig for which is used for overhead shots cost around $4,700 on the low end                  
without a camera. Stable panning shots require a dolly system or steady cam which runs around                
$2,400 and $1000 respectively. 
 
Weaknesses 

Using a drone does have drawbacks. Flight time will be limited to battery life, thus not                
making it an ideal solution for repetitive, long takes or long shoots.This can be mitigated with                
multiple battery packs. Implementing this solution will be difficult. Controlling a drone even in an               
indoor environment is complicated. There are many different physical factors that need to be              
considered and accounted for in code, on the platform, or both. For example, before flying the                
rotors need to be balanced as even a slight imbalance can cause additional vibrations              
throughout the platform which is bad for filming. An example of using code to compensate for                
physics is how drones bank and turn. To bank right the drone reduces power for the two props                  
on the side it wants to bank towards. This reduces the downward thrust in two ways. First, there                  
is that there is less overall lift, and second, the drone’s orientation shifts so some of the                 
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downward thrust is used to move horizontally so the drone loses altitude as it banks. Turning                
along the yaw or rotating in place has a less dramatic effect on altitude as it lowers power to two                    
props diagonally opposite each other by having these props reduce their speed. This reduces              
the compensation they produce for another two props which causes the entire drone to rotate.               
Like when banking, the overall thrust will go down, but the drone does not suffer the additional                 
effect of downward thrust lost due to horizontal thrust. Since we do not want the drone’s altitude                 
to fluctuate while maneuvering we have to increase overall thrust in both cases. But as we end                 
the move the drone must smoothly decrease back to the original thrust to return to a static                 
hover. The code will also have to compensate for the momentum built up during the bank or                 
turn. In short getting the drone to move around in a responsive but smooth fashion will be a                  
significant technical challenge. Keeping the drone stable for the purposes of filming will require              
a mix between coding nuanced commands and changes to the physical rig to dampen the               
motion on the camera. 

 
Trade-offs 

A drone is a jack of all trades solution. You can get any shot, but it’s not specifically built                   
for any one shot. You’ll get a better overhead shot with a crane rig and a better pan with a dolly                     
rig. However, you can get all of these shots with one rig without hiring additional staff. The                 
current solution focuses exclusively on tracking shots, or rather tracking one object throughout             
the scene which is preferable for dancers but limits the scope of applicability for other fields.                
Since the job of tracking of the dancers has been automated, the user will save on not hiring a                   
cameraman but lose out on the experience and flexibility a cameraman brings. There is also the                
(ethical) issue of automating a profession that people may grapple with. 
 
Comparison of Similar Systems 

Drones currently on the market either use GPS or recognition technology to achieve             
autonomous tracking. DJI happen to be leaders in this field with products like their Mavic series,                
Phantom series and Spark series [4]. The Spark Drones can use either a smartphone or a hand                 
gesture to set operating modes. The Phantom 4’s active track feature is even able to track                
nonhuman moving objects like cars or trains. The drones can use a combination of gps and                
active track to follow their targets as well. The biggest drawback to this is the cost of the drones.                   
The cheapest in the line is the Spark at $400 while the Mavic and Phantom are $1500 for the                   
base drone [2]. While the Spark is feasible, the gesture controls create a liability for dancers, as                 
their movement may also trigger a different operating mode than intended. While the packages              
that these platforms offer are great, a custom built drone will give us much more control to meet                  
our client’s needs than a repurposed drone.  

2.3. Architectural Diagram, Design Block Diagram 
Hardware  

Our project design uses an autonomous quadcopter equipped with target tracking           
software to follow dancers during a performance. Additionally, the quadcopter interfaces with            
the user through a phone app. Computations will be done on a Pi mounted on the drone which                  
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will feed information to the Flight Controller. The Flight Controller is a component normally found               
on drones. It interprets commands from a wireless transceiver, which receives commands from             
the user/remote control, and translates them into a signal that is sent into the ESCs (Electronic                
Speed Controllers). The ESCs control the amount of power sent to the motors from the battery.                
Each motor has its own ESC, and each ESC has its own connection to the flight controller. Our                  
design has four motors and four ESCs. By having separate connections, the flight controller can               
control each motor speed individually allowing the drone to execute complex maneuvers such             
as banks, turns, and flips. In between the battery and the ESCs is a power distribution board                 
which acts as a node to all four ESCs. The drone will use a camera and the flight controller’s on                    
board accelerometer as sensors for flight control. ​Figure 1 below shows a conceptual sketch              
with wiring. 
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Figure 1: Hardware Wiring Diagram.  

The above diagram shows how each component is linked to each other 
 

Research and Alternatives 
We considered using an off-the-shelf drone and programming it to track the dancers.             

However, it would pose a series of reverse engineering hurdles that made it a worse solution                
than building our own from scratch with open source components and software. First a drone               
that could do the work is already pretty expensive without the onboard AI, starting around $500                
for the functionality we need. The software and possibly even the hardware would be proprietary               
and likely not have available documentation unless we could get source code from the company               
which is unlikely. Interfacing with the existing hardware might not be possible and ripping out the                
existing boards just to use the shell, power source, engines and camera is cost inefficient at                
best and still might not fit our needs.  

 
Drone design is already a well understood and documented process with a plethora of              

both information resources from hobbyists and individual parts for purchase. Diving into the             
technical side of building a drone was more intensive and time consuming than using a pre-built                
drone, but the process of researching and understanding the physical system we will be useful.               
Going through the research also introduced us to concepts such as lift, torque, ducting the               
rotors to gain additional lift, how quads handle and maneuver, the difference between types of               
rotors, and how those differences affect performance. The value of this research can not be               
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understated. By researching and understanding the physical domain, we are better able to code              
autonomous controls, as we are aware of the implications the physics have rather than illicting               
those implications during coding which likely would have been a long and arduous task unlikely               
to produce a good final design. The price for our custom build is $393.72 which is cheaper than                  
the off-the-shelf drone that would still require modifications. Additionally, we’re able to customize             
the physical drone to the final goal rather than working around the physical design of a prebuilt.                 
With all this in mind building a custom drone from scratch is the better solution for this project.  

2.4. Description of Modules, Constraints, and Interfaces 
Drone 

For our custom build we used a 450mm frame with 10” rotors pitched at 4.5” and 920 kV                  
motors. Research into drone parts indicates that a heavier drone is less likely to jitter during                
flight from interference and moves much smoother than a lighter one because of the weight. A                
larger drone has the space for more payload which our solution requires, as we will be adding                 
on additional hardware. The 10” x 4.5” rotors and 920 kV motors provide the necessary lift to fly.                  
The motors will generate 3200 grams of maximum thrust or 800 grams per motor. Research               
indicates that an ideal thrust to weight ratio for a quad is 2 : 1 meaning that the quad can hover                     
at half throttle/power. 

 
The Quadcopter Software required for the Drone will have four hardware systems:            

Command Systems, Motor Systems, Video Systems, and External Systems. Components are           
set into their systems based on functionality and compatibility with other required components.             
The drone will be classified as a 450mm quadcopter meaning the 4 motors are spaced evenly                
225mm from the center of the drone. 

 
Command systems will be the brains of the quadcopter and the central hub from which               

commands are given and processed. Initially this system included a pi and powersource.             
However, we were able to remove the separate power source, and run the pi using the main                 
battery. 

 
Motor Systems are the components that allow the drone to fly. The components involved              

are the battery, flight controller, power distribution board, electronic speed controllers, motors,            
and propellers. The flight controller will contain a gyroscope, accelerometer, and altimeter to             
feed position data to the Pi in the command system. The battery will provide 5 minutes of flight                  
time.  

 
Video Systems are what captures and records the video. As of now, we are utilizing a                

cheap Pi camera for testing purposes. The quality of the camera will be constrained by costs                
and weight. The quadcopter frame is also a part of this system, and is at a size of 450mm                   
across. 
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External Systems are all components that are not mounted within the quadcopter. The             
only equipment in this system are chargers for the quadcopter lipo battery. The charger must be                
a balanced charger meaning it checks the voltages in each individual cell.  

 
Software  

The software must interface with all of the hardware modules, capture video, process             
images for target recognition, and compute an adaptable course of action through artificially             
intelligent algorithms. This will require a number of independent threads to monitor each of the               
separate modules. The AI will rely on the router module to handle all inter-thread              
communication. 

 
The proposed software component diagram (See figure below) contains the main           

components for our drone software.  
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Figure 2 Software Component Diagram 

This is an overview of the software components. 
 

 
Router 

Using a synchronous queue system the Router module allows for interprocess           
communication. When a communication is received, the to field is considered and either             
handled by the router itself or places the message in another threads queue. This process               
allows for a buffering like system. This is a scalable design because any number of threads may                 
be joined to the router. This is also a module design because each module uses the same                 
Client Socket class maintained by the Router allowing for interchangeability.  
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BTC - Bluetooth Controller 
Software module that initializes the bluetooth server. After initialization the BTC waits for 

a bluetooth connection, after which it will connect to the router and allow the app to send 
commands to the rest of the system via the Router and vice versa.  

My advice to future improvement would be to debug the reconnection system. If 
bluetooth connection is lost with the phone, then the whole flight must be restarted before 
connection can be established again. Additionally, security could be increases as there is no 
authentication other than to connect the phone must have been previously paired via bluetooth 
to the drone.  
 
FTC - Flight Controller 

Flight Controller module reacts from input received from either the android app or the              
computer vision module via the Router. When input has been received from the app the               
command is simply executed (i.e. Move Forward 5 causes the drone to move forward 5 ft).                
When the input has been received from the computer vision a small amount of logic needs to be                  
performed to convert the given distance and angle into amount rotation or direction of              
movement.  

Either way a command is sent to the MultiWii software. This command takes the shape               
of Pulse Width Modulation (PWM). The PWM is sent using a library called Pi-Blaster. Pi-Blaster               
generates a 50hz signal to the MultiWii Microprocessor. Once the signal has been received b               
the CRIUS AIO Pro board the commands are handled by the open source library MultiWii.  
 
Computer Vision 

Computer Vision module is the eyes for the drone. The target identification is reliant on 3 
components: An LED Ring, A Camera, and Retroreflective Tape - not to be confused with 
Reflective Tape. The LED Ring is placed around the lens of the camera. This position allows the 
light from the ring to bounce off of the retroreflective tape and back to the camera. When the 
light is seen on the tape by the camera, the rest of this module’s functionality can taken care of 
through the software. The image is processed into Hue Saturation Value (HSV) filter. This filter 
makes it easier to see reflective items. Here, a mask is applied to remove all parts of the image 
that are not the retroreflective tape.  

Finally, the image is processed once more to find contours, these contours are bounding 
boxes for our targets. The contours are formatted into data columns and passed on to machine 
learning. Here, a cartesian decision tree is used to discern the target’s distance from the drone. 
When the distance is known, the software can use that and the number of pixels the target is 
from the center of the frame to determine the target’s angle to the drone. Now the Computer 
Vision module can pass the target’s distance and angle on to the Flight Controller module, 
where the flight controller can decide what to do. Lastly, computer vision saves the image into a 
video file. At the end of the run, the video file can be uploaded to a repository to be viewed. 
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Drone Communication 
The software module that will manage wireless communication with the Android App.            

This communication will handle incoming and outgoing commands with the android application.            
Once a command has been received it will be decrypted, and parsed for the relevant               
information. Example of commands that the drone can receive are: Select Target, Arm Drone,              
Disarm Drone and Upload New Target.  

 
Android Activities 

The Activities component act as the user interface. There are different activity pages for 
different uses; the developers activity page and the image alteration activity page. The activities 
are the users way to communicate to the drone and override the drones autonomous code in 
most situations.  

 
Developers 

The Developer section of the user application contains features that allow the user to 
control the drone and overrides most other autonomous code commands. Specifically, the 
developer section allows the user to issue commands to go: up/down, left/right, 
forwards/backwards, and rotate clockwise/counterclockwise. Additional commands include 
arming/disarming, land/takeoff, hover, and connect to the drone.  
 
Mask Configuration 

The Mask Configuration section of the user application contains features that allowed us 
to work/test our image recognition code on the Raspberry Pi. The application receives an image 
from the Pi and displays it on the screen. The user can then choose to change the contour size, 
and the lower and upper thresholds of the RGB values(Red, Green, Blue).  
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User Interface 
Developer Interface 
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Image Alteration Interface 

 

3. Implementation 
3.1. Implementation Diagram 
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3.2. Technologies  
Raspberry Pi 3 B+ 

The microprocessor used to receive commands from the android app, perform computer 
vision calculations, and control the flight of the drone. The majority of the drones logic takes 
place on this component, and it handles multithreaded communication between the drone’s 
modules.  
 
CRIUS AIO Pro Flight Controller 

The microcontroller used to run the MultiWii software. The CRIUS AIO Pro Flight 
Controller received 50 Hz signals from the receiver (in this case the Raspberry Pi) and 
generates the post logic signals for the MultiWii software. The hardware itself has a gyro, a 
barometer, and a accelerometer onboard to provide feedback to the MultiWii software. 

3.3. Software Used 
OpenCV 

Python3 library used to implement computer vision algorithm. This open source library 
allows us to use computer vision to determine target location on an image. 
 
Sklearn & Pandas 

Python3 libraries used to implement the machine learning algorithm. Specifically, we use 
a Cartesian Decision tree formulated through a statistical learning process. The algorithm 
produced helps us determine the distance of the target from the drone. 
 
pyBluez 

Python3 library used to handle bluetooth communication with the android app. This 
library allows us to create a bluetooth server on the Raspberry Pi and allows other bluetooth 
enabled devices to connect to it.  
 
Pi-blaster 

Python3 library used transmit PWM from Pi to MultiWii controller. This library allows for 
minute control over the PWM that are outputted from the Pi. By using this library we are able to 
send signals to the CRIUS AIO Pro board and have that input be given to the MultiWii software. 
 
MultiWii 

3rd party library used to control the flight controller output to the ESCs. The MultiWii 
library provides a host of benefits to the project. There are modes for flight stabilization, heading 
holding, and many other settings we weren’t able to take advantage of due to our time 
constraint.  
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3.4. Rationale for Technology/Software Choices 
Raspberry Pi 3 B+ 

Was chosen because it is small, lightweight option for on-drone processing to be 
performed that supports all of our software dependencies as well as integrate with the hardware 
for the drone.  

 
CRIUS AIO Pro Flight Controller 

Was chosen because it can run MultiiWii firmware, and for its ability to integrate with 
Pi-Blaster and the Electronic Speed Controllers.  

 
OpenCV 

Was chosen because it is a python library that performs computer vision tasks. A 
computer vision library was necessary to this project because without it we would have no way 
of determining where the target is. This provides important feedback about where the target is 
and how they are moving. 

 
Sklearn & Pandas 

Were chosen because they are a python library that performs machine learning tasks. 
The machine learning on this project is used to interpret image input and determine how far the 
target is from the drone. 

 
pyBluez 

Was chosen because it is a python library that allows the Pi to create a bluetooth server. 
This bluetooth server is also able to connect/pair with android devices, thus making this a good 
choice for bluetooth communication. 

 
Pi-blaster 

Was chosen because it can send PWM to the MultiWii Controller at the required 
frequency (50hz). 

 
MultiWii 

3rd party library used to control the flight controller output to the ESCs. The MultiWii 
library provides a host of benefits to the project. There are modes for flight stabilization, heading 
holding, and many other settings we weren’t able to take advantage of due to our time 
constraint.  
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3.5. Applicable Standards and Best Practices 
Bluetooth Standard - IEEE 802.15  

This standard is applicable because we are using bluetooth technology and therefore 
need to make sure our project complies with the bluetooth standard set by IEEE. 
 
Inter-board Communication - 50 Hz and 490 Hz PWM 

This standard is applicable because it is the input signal used for the Crius AIOP Flight 
controller board and thus output signal of our Pi. The Flight Controller outputs at 490 Hz to the 
ESCs to control motor speed and maneuver the drone. 

4. Testing, Validation, and Evaluation 
4.1. Test Plan  
Drone Flight 

● Manual Flight 
○ Manual Flight Tethered - partially successful began seeing cyclical oscillations in 

flight and drift. Drifting is to be expected in any drone build and can be easily 
remediated through trimming. Oscillations will require another solution 

○ Manual Flight Untethered Trim - partially successful quadcopter’s drift was able 
to be trimmed but cyclical oscillations still present shortly after takeoff 

○ Manual Flight Untethered Angle Correction Set to LOW, MEDIUM, and HIGH - 
partially successful drone had a short stable flight however it rolled significantly 
right. Pilot was not able to correct in time and attempted to abort resulting in a 
crash landing and destruction of a prop halting further testing. Uncertain as to 
whether this was an issue with the accelerometer affecting controls or a trim 
issue. 

● Target tracking of retro reflective tape successful in laboratory setting accurately 
identifying targets after manual masking 

● Wireless control of the Pi 
○ ssh to Pi successful: Commands sent to Pi via ssh successful: Pi generated 

signal sent to drone resulting in motor output matching the sent command. 
○ App control successful - drone was tethered but able to spin up and respond to 

commands from the app appropriately 
● We automated our software testing process by adding it as a flag while running the 

drone software “-test” 

4.2. Unit Testing 
● To run Unit test run “python3 run.py test” 

4.3. Interface testing 
● Interface testing was performed between the software components via unit tests.  
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● Interfacing between the software and hardware components was in the early stages of 
development and therefore were still being manually tested for correctness.  

4.4. System Integration Testing 
Connecting the Pi to the flight controller, and the flight controller to the ESCs required 

significant testing of each of the individual parts. We used a waveform generated to confirm 
each part acted as expected from the given input and we used an oscilloscope to confirm each 
part (one at a time) gave the correct output under given scenarios. When the sends and 
receives were confirmed working, we connected the parts (two at a time) and started running 
some of our code. When all the permutations of part pairings were verified, we finally connected 
all three parts and tested that ssh terminal could propagate through the Pi, to the flight 
controller, and finally out to the ESCs. 
 

There were also several software components (ie ComputerVision, Flight Controller, 
Android App). These systems were integrated via a messaging network similar to a CAN bus 
implementation. A Router program would take all other components in as clients. Each client 
could write a message with a body and note the intended recipient. The messages were sent to 
Router and router then passed the messages on to the intended recipient. So testing the 
integration just meant confirming that everyone got the messages that were intended for them. 
We also implemented a mock client to impersonate components (ie receive messages intended 
for a software component without relying on that component) and to send messages for testing 
functionality. 

4.5. Validation and Verification 
Validation 

We validated that the software was operating as expected through a set of unit tests.  

Verification 

We verified these controls manually while testing features that required these 
components to work together to accomplish. 

4.6. Evaluation  
Performance Metrics 

Very few of the modules we created had a domain model that could be contained on a 
quantifiable scale. Our project required a more subjective look at each part and asking 
questions such as ‘In this video take, did the retro reflective tape detections work as well as we 
would like?’ It is difficult to build a test around such a module without knowing the expected 
bounds of each contour in every frame. Certainly, a test video could be constructed and paired 
with a datasheet of expected values, but risk of using subjective metrics was far outweighed by 
the cost of calculating test scenarios. So we chose to pursue the former. 
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Computer Vision 

We decided it was fair to judge this based on the number of frames the target was in the 
frame vs. the number of frames the target was actually detected. This number should be 80% or 
higher. The angle the target can be from the camera would ideally be as high as 45 degrees. 
Lastly, the bounding boxes of the contours should have, at most, 2 pixels over or under 
bounded for the target. (ie 2 pixels too wide or 2 pixels too thin). 

 
Retro Reflective Target Detection 

We took video of a team member holding the target in front of the camera with light 
shining on the retro reflective tape. We used some built in libraries from openCV to draw boxes 
around our contours and output the video to be viewed by our ‘testers’. The original video was 
also kept (without any contours or alterations) to be fed into the computer vision module for 
subjective regression testing.  
 
Evaluation Results 
Retro Reflective Target Detection 

With the videos taken and the contours bounded, we found that the target detection was 
highly consistent. The target was visible to the camera for angles up to and about 45 degrees. 
The number of frames the target was in frame and successfully detected was 100% (minus the 
frames where the angle of the target was unreasonably steep). And The contour bounds were 
always touching the actual target edges so long as the calibration was set correct. 

5. Project and Risk Management 
5.1. Roles and Responsibilities 
Luke Rohl — Scribe, Drone Developer 
Scribe  

● Leads meetings 
● Takes notes during the meetings 
● Keeps track of due dates and tasks 

 
Drone Developer 

● Helped design drone’s software architecture 
● Coded Router Module 
● Coded Bluetooth Controller (BTC) Module 
● Coded run.py 
● Coded Flight Controller (FTC) Module 
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Mir Aamid Ahbab — Chief Engineer/Client, Hardware Engineer 
Chief Engineer 

● Manage budget and order items 
● Communicate with Advisor 
● Provide vision of project as Client 

Hardware Engineer 
● Determine physical components needed to meet requirements 
● Assemble physical components in drone 

 
Nate Allen — Software Developer, Data Analyst, Software Tester 
Software Developer 

● Computer Vision for drone  
● Calibration setup program 
● Camera interfacing and image processing 

Data Analyst 
● Research and Development for Machine Learning 
● Collected and purposed data to train a distance classifier for computer vision 

Software Tester 
● Subjective verification of 

○ Target detection successfulness 
○ Target distance consistency and accuracy 
○ Target angle consistency and accuracy 

 
Isaac Holtkamp — Software Developer, Software Tester  
Software Developer 

● User Interface via android application 
● Communication with drone 

○ Computer vision messages to change image parameters 
○ Drone communication to move Quadcopter 

Software Tester 
● Verification of Bluetooth communication  

 
Alexander Nicklaus — Embedded System Developer, Technician 
Technician 

● Constructed drone and tackled problems that arose in the physical build 
● Fabricated additional parts for the drone build 

Embedded System Developer 
● Worked on inter-board communication and signal standards 
● Configured and worked with Multiwii code for drone flight 
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5.2. Task Decomposition 
Luke Rohl 

● Drone Communications - Router 
○ Bluetooth Communication - BTC 

■ Client 
■ Server 

○ Socket Communication  
■ Client 
■ Server 

○ Router  
■ Transferring communications to and from multithreaded modules 

● Drone Flight - FTC 
○ Software to Hardware Converter 
○ Software Flight Logic 

● Init Script - Run.py 
○ Arg parser 
○ Flags to turn modules off at startup 

Aamid Ahbab 
● Component Documentation 

○ Component Price 
○ Component parameters 

■ Weight 
■ Dimensions 
■ Compatibility 

● Drone Design 
○ Frame Layout and Weight Distribution 

● Drone Flight 
○ Assembly and Maintenance 
○ Safety of physical system and operators 

Isaac Holtkamp 
● Flight commands 

○ Send commands to the quadcopter to move in a specific way 
■ Roll/Pitch/Yaw 
■ Up/Down 
■ Rotate 

● Computer Vision 
○ Send commands to Pi to adjust picture settings 
○ Display Image for users to see 
○ String together messages from Pi to create image 

Alexander Nicklaus 
● Multiwii 
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○ Defining - a process in which the programmer configures third party code for their 
project by uncommenting defines within the code 

○ Debugging 
■ Arming/Disarming 
■ Compiler issues with function prototypes 

● Interboard Setup 
○ Physical Wiring 
○ Board Communication Standards 

● Drone Build 
○ Fabricated mounting jigs for Pi, camera, and sonar sensor 
○ Assembly and Maintenance 

Nate Allen 
● Drone Software 

○ Human object detection - deep learning (Deprecated) 
○ Target tracking and predictive movement (Deprecated) 
○ RetroReflective Target Detection 
○ AI to determine the distance of target from drone - Statistical Learning 
○ Interfacing with camera and image processing 

● Hardware 
○ Researched and selected necessary hardware for computer vision (minus the 

camera which was picked by Aamid) 
○ Researched and developed a successful target shape that was both quickly 

processable and made it possible for camera to infer the distance 
● Drone communications 

○ Designed (but not personally implemented) a messaging system similar to CAN 
Bus design for communication between running processes. 

○ Small hand in some networking functionality such as non-blocking receives by 
client 

● Communication protocols 
○ Sending Images to App in chunks to display during flight or calibration 
○ Receiving incremental commands for values in calibration from App 

 

5.3. Risk Management 
1. Drone flight resulting in 

1.1. Bodily harm to person 
1.2. Irreparable damage to drone 
1.3. Repairable or replaceable damage to drone 

2. Electrocution during R&D 
2.1. Minor 
2.2. Severe 
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Probability 

 
 
 
 
Severity 

 Unlikely Rare Likely Frequent 

Severe 1.1, 2.2    

Significant  1.2   

Moderate     

Minor 2.1  1.3  

Minimal     

Table 1 Risks 
This is an overview of risks, their maximum likelihoods, and maximum severity 

Mitigations 
1. We tethered the drone during initial flight testing until we were certain it safe enough to 

fly unrestrained. 
2. Observed safe practices when handling and storing electrical components. 

 
Notes on Propellers and Motors 

Once the quadcopter was put together and ready for flight, we encountered multiple 
issues that increased the risk of injury and damage to the drone. The first issue was the 
propellers and motors. We first had to test the drone without the propellers on to see which way 
they spinned. We had to test the spin direction of the motors because they spun in different 
directions and if we attached the propellers to the wrong motor, they would generate “negative” 
lift and push the drone down. Additionally, if the propellers were on the wrong motors, there was 
a risk that the caps would shoot off of the drone.  

 
Notes on Drone Flight 

When the drone flies, it needs to trim its roll, pitch, and yaw to have stable flight.  

5.4. Project Schedule 
Gantt Chart 

Figure 4 is a representation of the ideal timeline of our project. Integration of the MultiWii                
software and the ESCs was our largest roadblock this semester. Taking an unforeseen 3 weeks               
to complete. Our inexperience with Flight Controllers and ESCs might have been the largest              
part of this hurdle and requiring the whole team to complete this effort. After this hurdle was                 
completed we were far enough behind in our schedule that only just allowed us to just begin the                  
hardware testing phase. 
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Figure 4 Project Timeline Estimation  

Block-style scheduling table shows what tasks are planned and where they fall on a timeline for the project. The 
columns are broken down into months, and each month is broken down further into weeks. The blue boxes represent 

tasks. 
 
  

The first semester primary goal was assembly of hardware, software modules, and the             
integration of the two. The secondary goal is to test the software modules and to calibrate the                 
hardware components for our drone.  

 
The second semester’s primary goal was to test the hardware and software integration 

and to test our risk situations to ensure our product is safe for flight. 
 
 

 
Figure 5 High Level Project Schedule 

The table shows a high level schedule based on milestones’ dependencies. Each colored rectangle is a milestone 
with an arrow showing the milestone which requires its completion before being started. The schedule is derived from 

that dependency graph. 
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Stage 1 - Completed 

Stage one is the assembly phase. The foundation for all of the major focal points of are                 
project are done at this stage. The drone, the app, and the technology for tracking targets have                 
no dependencies on each other, so they can be done at the same time.  
 
Stage 2 - Completed 

The module libraries is the only milestone which will be completed at this time, since the                
next milestones are both dependant on this milestone. This stage will be all about the creation                
of the module libraries. These libraries will provide a layer of abstraction for the drone and the                 
hardware. Since we have about 10 different hardware modules there will be a heavy workload               
fitting for an entire team to work on. Each of these hardware modules will need to initialize its                  
respective hardware. It will also need to handle serialized communication with the hardware,             
and in some cases, a waveform generator will be needed to communicate with hardware              
devices. 

 
Stage 3 - In Progress 

This stage is almost complete, but is still missing those last few things. Computer vision               
was able to successfully identify a target, it’s distance. The android app had been completed               
and the drone can be controlled (barely) by the app. This symbolizes round trip communication               
between the android app and the drone and allowed additionally trimming. Unfortunately, we             
were not able to finish trimming the drone’s flight with the software before the end of the                 
semester had arrived due to part damage.  
Stage 4 - Incomplete 

The final stage is only a small adjustment on the 3rd. By the end of the 3rd stage, we                   
should be able to track and follow a single target. Also, most of our use cases will be finished in                    
terms of app-drone communication. Now we only extend that functionality to follow multiple             
targets rather than a set single target. 
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Figure 6 Work Breakdown Structure 

The figure shows a tree-structured break down of the tasks required to be completed and deliver the product with all 
of its requirements by the end of the year. The rectangles are each of the milestones we identified earlier, the bullet 

points below detail the minor tasks within the corresponding milestone. 
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Figure 7 Software Component Dependency Graph 

Is showing the dependency graph for the software components. The Software Flight Controller code is dependant 
upon the positioning Controller, Target Tracking and the Hardware communication. The Positioning controller is 
dependant on Drone communication and Collision Avoidance. The Target Tracking is dependant upon Target 

Recognition. Target Recognition, Drone Communication, Collision Avoidance and Hardware Communication are no 
dependant upon other software modules. 

6. Conclusions 
6.1. Closing remarks 

Our goal for this project is to have an interesting and comprehensive way to record               
videos of dancers at dance competitions and performances. We would like to improve video              
recording and quality with a drone that would take out or reduce human error in recording. Our                 
design includes multiple modes of recording and allow for a range of dances that can be                
recorded including swing, west coast, salsa, and bachata. We have the ability track dancers and               
follow seamlessly while recording the performance using a retroreflective tape implementation           
of target tracking. 

 
The Quadcopter Cameraman team would like to kindly thank Iowa State University and 

the College of Electrical, Computer, and Software Engineering for promoting student 
professional experience and sanctioning this cross-disciplinary project. As students, the team 
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appreciates the university for prioritizing outstanding issues with the current small equipment 
checkout system from the Electronics and Technology Group (ETG). Project Quadcopter 
Cameraman’s team would also like to thank ETG for their mentorship in developing the team’s 
professional skills, for allocating human and financial resources, and for sharing their workspace 
with a handful of engineering students. 

6.2. Future Work 
There is a lot of future work that could take place on this project. Since this project was a 

strong balance between software and hardware, there is plenty of room for future work in both 
areas. 
 
Software 

On the software side of things there are always bugs to kill, security to increase, and 
efficiencies to officiate. The Android App itself could use more intuitive controls. Instead of 
typing in a particular value desired by the user the amount should automatically start at neutral 
and then be incremented up or down depending on the user input. The Drone software has a lot 
of room for improvements. The Bluetooth Controller (BTC) will only allow 1 client to connect. 
This isn’t ideal and can be improved. The future work for the BTC could include starting the BTC 
again so that it waits for another connection. If it times out  then it should land safely. The Drone 
Router could use several updates. Handling multithreaded anything isn’t easy and the router is 
the same. There are bugs that need to be ironed out and much room for an increase in 
efficiency.  

 
Hardware 

Hardware is complete, but further upgrades could enhance the system offering greater 
flight stability, reliability, and potential new features. However all new upgrades are limited by 
funds available for future iterations. 

 The flight controller is the first area of improvement. A more advanced flight controller 
offers more reliability in its sensors. Advanced boards also have more features with a greater 
number and variety of sensors. Obtaining similar FCs to those of DJI will offer a greater 
advantage to both developers and end users due to their reliability and overall capabilities. 
Utilization of a new flight controller will also give developers the option to use alternate firmware 
for their boards. This has the potential to simplify coding for developers by using a friendlier 
firmware.  

The camera we chose to use was simple and cheap, which made it great to develop 
with. However, the quality of the camera is not the best and future iterations of this project can 
definitely find a better camera to record with. A better camera will involve higher resolution and 
video quality.  Decisions for future cameras will still be constrained by the weight of the device.  

While the battery and motors on board are quite sufficient, upgrading the capabilities of 
each will allow more room to explore future functions for the drone involving heavier equipment 
like cameras. A battery that can operate at 14.8 V can supply more power to motors, thereby 
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increasing thrust. However, the motors will also need to be upgraded to be compatible with an 
increased voltage. This is a fairly costly upgrade and is also optional.  

The current hardware that the drone utilizes is sufficient for the task at hand. 
Components are compatible and allows the drone to fly. However, upgrading of parts can lead 
to greater performance or better ease of use.  
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